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Abstract

As more and more sensing technologies is affordable
nowadays, cameras are the most common and ubiquitous
equipment in daily life. Considering that cameras nowa-
days are not only cheap and lightweight but precise with
high resolutions, constructing 3D models from image se-
quence becomes a more viable alternative. In this paper,
we review the state-of-the-art methods and implemented an
optimization algorithm for 3D human pose reconstruction.
We further use ADMM when computing. Our work shows
that this algorithm can perform well on most of images with
human poses.

1. Introduction

The desires to apply computer vision technologies on
products has become popular in these years. With the
growth of games, movie industry, and virtual/augmented re-
ality applications, there has been increasing demands for
geometry 3D models. However, existing solutions are not
fully satisfying. User-driven modeling is time-consuming
and error-prone, while 3D scanners are costly and cumber-
some. As more and more sensing technologies is affordable
nowadays, cameras are the most common and ubiquitous
equipment in daily life. Considering that cameras nowa-
days are not only cheap and lightweight but precise with
high resolutions, constructing 3D models from image se-
quence becomes a more viable alternative.

Also, although the computation of devices is much more
powerful than in the past, application of computer vision
still relies on the mathematical techniques, especially con-
vex optimization method. Therefore, this paper, first, re-
views the state-of-the-art models. Second, we implemented
a optimization algorithm for 3D human pose reconstruction.
Furthermore, we leverage a ADMM algorithm for optimiza-
tion. Finally, we show our implementation result by apply-
ing it on multiple types of pictures. The program does well
in most of the images.

2. Related Work
Though the video [5] shows that the 3D shape of an ob-

ject can be reconstructed from 2D images, such technique is
not sufficient enough to handle all the object reconstruction.
In practice, many non-rigid objects, e.g. the human poses,
face can deform with certain structures. Intuitively, the only
difference between non-rigid and rigid situations is that the
non-rigid shape is a weighted combination of certain shape
bases. Thus, knowing these bases is important in non-rigid
structure recovering.

This work is correlated to nonrigid structure from mo-
tion (NRSfM), i.e. a deformable shape can be recovered
from multi-frame 2D-2D correspondences. Torresani et
al. [4] proposed to recover time-varying shape and mo-
tion of nonrigid 3D objects from uncalibrated 2D point
tracks. In NRSfM, the low-rank shape-space model has
been frequently used, but the basis shapes are still unknown.
Typically, the joint estimation of shape variables and ba-
sis shapes is solved via matrix factorization. Christoph et
al. proposed the first model free approach that can recover
non-rigid shape models from single-view video sequences
[2]. Moreover, Jing Xiao et al. provided anther closed-
form solution to this problem by introducing other two con-
straints, rotation constraints & basis constraints [6]. Some
other works use iterative algorithm [3] or sequential process
[1] for better performance.

3. Model
3.1. Problem Formulation

In this framework, the goal is to estimate the 3D shape
of the object from a single 2D image. The unknown 3D
model is defined by a set of landmarks and assumed to be
a linear combination of some predefined basis shapes with
sparse coefficients.

Let S ∈ R3×p denote the 3D locations of the p land-
marks, which are the joints of the human bodies in the case
shown in Fig.1, and W ∈ R2×p is their projection on a 2D
image. The relation can be represented as follows:

W = ΠS (1)
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Figure 1. An overview of the framework, in which the 3D shape is defined by a set of landmarks and assumed to be a linear combination
of some predefined basis shapes with sparse coefficients.

, where S is represented as a linear combination of k basis
shapes B.

S =

k∑
i=0

ciBi (2)

For simplicity, the object is assumed to be far away from
the camera. Therefore, the camera calibration matrix Π can
be reduced to a simple form.

Π =

[
s 0 0
0 s 0

]
(3)

We further introduce R ∈ R3×3 and T ∈ R3 for the
rotation and translation of the object, respectively.

W = Π(R

k∑
i=0

ciBi + T1T ) (4)

The projection matrix Π can be combined with the ro-
tation R as R̃, which is the first two rows of R multiplied
by a scalar s. The translation T can also be eliminated by
centralizing the data.

W = R̃

k∑
i=0

ciBi (5)

With the representation in Equation.5, 3D shape recon-
struction can be formulated as the following optimization
problem:

min
c,R̃

1

2

∥∥∥∥∥W − R̃
k∑
i=0

ciBi

∥∥∥∥∥
F

2

+ α ‖c‖1 (6)

subject to R̃R̃T = I2 (7)

The first term of the objective function stands for the re-
projection error, and the second term is the l-1 norm of
the linear coefficients, enforcing the representation to be
sparse. Note that the rotation matrix R̃ is constrained to
be orthonormal, which in general is not a convex set.

To address the problem, one can use the method of alter-
nating minimization. That is, we fix R̃ and update c, then

fix c and update R̃, until convergence. However, due to
the non-convexity of the problem, we may be stuck at lo-
cal minimum easily if the initialization is far away from the
true solution.

3.2. Convex Relaxation

To obtain the optimal 3D reconstruction, a convex for-
mulation is proposed to approximate the original one, which
is called convex relaxation.

First, we replace the original projection model by a
shape-space model, in which there is a rotation for each ba-
sis shape. With the merit of this change, we can combine c
andR intoM and get rid of the bilinear form in the previous
formulation.

W = Π

k∑
i=0

ciRiBi =

k∑
i=0

MiBi (8)

,where Mi ∈ R2×3 is the product of ci and the first two
rows of Ri. Now the formulation can be written as:

min
c1,...,ck,Mi,...,Mk

1

2

∥∥∥∥∥W −
k∑
i=0

MiBi

∥∥∥∥∥
F

2

+ α ‖c‖1 (9)

subject to MiM
T
i = ciI2 (10)

Subsequently, the following proposition is used to
relax the orthogonality constraint on M , which makes the
problem non-convex.

Proposition:
Given a set of orthogonal matrices S = {M ∈
Rm×n |MTM = c2In} , its convex hull conv(S) =
{M ∈ Rm×n | ‖M‖2 ≤ |c|}

The orthogonality constraint is then turned into a con-
straint on the spectral norm of M .

min
c1,...,ck,Mi,...,Mk

1

2

∥∥∥∥∥W −
k∑
i=0

MiBi

∥∥∥∥∥
F

2

+ α ‖c‖1 (11)

subject to ‖Mi‖2 ≤ |ci| (12)
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Figure 2. Examples of the basic shapes. Each shape is composed by 15 points.

Moreover, we can replace the second term of the ob-
jective function by the spectral norm of M and get rid of
the constraint since the optimal value occurs when equality
holds.

Consequently, the final formulation can be written as fol-
lows:

min
Mi,...,Mk

1

2

∥∥∥∥∥W −
k∑
i=0

MiBi

∥∥∥∥∥
F

2

+ α

k∑
i=1

‖Mi‖2 (13)

Note that minimizing the spectral norm ‖.‖2 of a matrix
is equivalent to minimizing the l−∞ norm of the vector of
its singular values. Therefore, by spectral-norm minimiza-
tion, we can not only minimize the number of activated ba-
sis shapes but also enforce Mi to be orthogonal, since an
orthogonal matrix has equal singular values.

The final formulation is convex, yet it is not trivial to
optimize the objective function directly. In Sec.3.3 we will
briefly introduce several optimization methods used in the
framework.

3.3. Optimization

First, the Alternating Direction Method of Multipliers
(ADMM) is applied. Suppose the original objective func-
tion have multiple terms that are not easy to solve jointly.
For instance, the original problem is represented as:

min
x
f(x) + g(x) (14)

The ADMM method introduces an auxiliary variable
along with an additional constraint so that the different
terms can be updated separately.

min
x,y

f(x) + g(y) (15)

subject to x = y (16)

In our problem, an auxiliary variable Z is introduced in
order to optimize the two terms of the objective function
alternatively.

min
M̃,Z

1

2

∥∥∥W − ZB̃∥∥∥F
2

+ α

k∑
i=0

‖Mi‖2 (17)

subject to M̃ = Z (18)

, where M̃ = [M1,M2, ...,Mk] , and B̃ =

[B1, B2, ..., Bk]
T .

The second approach of optimization is the augmented
Lagragian method, which is similar to the penalty method.
Suppose that the original problem can be formulated as:

min
x
f(x) (19)

subject to ci(x) = 0 (20)

The penalty method adds a penalty term to the objective
function:

min
x

Φk(x) = f(x) + µk
∑
i

ci(x)2 (21)

In each iteration of optimization, the problem is re-
solved with a larger µk. It is obvious that the original con-
straint holds as µk approaches infinity. However, it is not
computationally reasonable to solve the problem with µk
equals to infinity.

Alternatively, the augmented Lagrangian method relaxes
the constraint by some value λ/µ, thus we can achieve the
optimal value with a finite value of µ.

min
x
f(x) (22)

subject to ci(x) = 0 (23)

3



After the relaxed constraint is plugged into the penalty
term, a new objective function, also called the augmented
Lagrangian, can be derived as:

min
x

Φk(x) = f(x) +
µk
2

∑
i

ci(x)2 −
∑
i

λici(x) (24)

As described above, the augmented Lagrangian
Lµ(M̃, Z, Y ) of our problem can be written as:

1

2

∥∥∥W − ZB̃∥∥∥F
2

+α

k∑
i=0

‖Mi‖2+〈Y, M̃ − Z〉+µ

2

∥∥∥M̃ − Z∥∥∥F
2

(25)
, where Y is the dual variable and µ is the parameter con-
trolling the step size in optimization. To minimize the aug-
mented Lagrangian, we iteratively update M̃ , Z, and Y un-
til convergence:

M̃ t+1 = argminM̃ Lµ(M̃, Zt, Y t) (26)

Zt+1 = argminZ Lµ(M̃ t+1, Z, Y t) (27)

Y t+1 = Y t + µ(M̃ t+1 − Zt+1) (28)

Note that Y can be seen as an estimate of the Lagrange
multiplier, and the accuracy of this estimate improves at ev-
ery iteration.

3.4. Reconstruction

Finally, with the optimalM , we can directly derive c and
R and reconstruct the 3D shape of the object, as described
in Algorithm 1.

Algorithm 1 Direct Reconstruction.
Input: M1, M2, ..., Mk;
Output: S;

1: for i = 1 to k do
2: ci = ‖Mi‖2;
3: r

(1)
i = m

(1)
i /ci;

4: r
(2)
i = m

(2)
i /ci;

5: r
(3)
i = m

(3)
i /ci;

6: Ri = [ r
(1)
i , r

(2)
i , r

(3)
i ]

T
;

7: end for
8: S =

∑k
i=0 ciRiBi;

9: return S;

4. Experiments
We implemented the algorithm and tested it on several

photos. We used 128 human poses as basic shapes. Each
shape is composed by 3D co-ordinations of 15 joint point
of human. Some of the basic shapes are shown in Figure 2.

The basic shapes contains human poses of standing, jump-
ing, running, etc. Our algorithm should compute a linear
combination of the basic shapes to minimize the difference
to the 2D projection of the joint points in the origin pho-
tos. For each photo, we manually marked 15 joint points of
the person. Then, we ran the program to reconstruct the 3D
pose of the photos.

Our program is implemented in MATLAB. The opti-
mization algorithm converged in 1,000 iterations. Finally,
we obtained a linear combination of the basic shapes. The
results are shown in Figure 3. We used some photos of run-
ning, standing and jumping people. We also used some pho-
tos of weird poses as well as some photos of gorillas. The
results reveal that the algorithm did well in reconstructing
the 3D poses for the origin images. It could even recon-
struct the poses of gorilla climbing a tree. The results in for
move poster and an upside-down person are not as good as
others. This is because the poses in the two photos are far
away from the basic shapes. Thus, the error in the results
are larger than others.

5. Conclusion
In conclusion, our project implemented a optimization

algorithm for 3D human pose reconstruction. We used a
ADMM algorithm to do the optimization. We did the ex-
periments on multiple types of images. The program did
well in most of the images.

A drawback of the algorithm is that it relies on the basic
shapes. Thus, the algorithm can not perform well in some
weird poses. In addition, it needs to manually mark the joint
points of a human photo. In the future, we can use com-
puter vision algorithms to automatically capture the land-
mark points of a human so that the algorithm can be widely
used.

References
[1] A. Agudo, L. Agapito, B. Calvo, and J. M. Montiel. Good vi-

brations: A modal analysis approach for sequential non-rigid
structure from motion, 2014.

[2] C. Bregler, A. Hertzmann, and H. Biermann. Recovering non-
rigid 3d shape from image streams, 2000.

[3] A. Del Bue, J. Xavier, L. Agapito, and M. Paladini. Bilinear
modeling via augmented lagrange multipliers (balm), 2012.

[4] L. Torresani, A. Hertzmann, and C. Bregler. Nonrigid
structure-from-motion: Estimating shape and motion with hi-
erarchical priors, 2008.

[5] S. Vicente, J. Carreira, L. Agapito, and J. Batista. Recon-
structing pascal voc, 2014.

[6] J. Xiao, J.-x. Chai, and T. Kanade. A closed-form solution to
non-rigid shape and motion recovery, 2004.

4



Origin images Images with marked joint points Results
Figure 3. Results of the experiments.
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